Sirtuin-1 regulates acinar-to-ductal metaplasia and supports cancer cell viability in pancreatic cancer.
نویسندگان
چکیده
The exocrine pancreas can undergo acinar-to-ductal metaplasia (ADM), as in the case of pancreatitis where precursor lesions of pancreatic ductal adenocarcinoma (PDAC) can arise. The NAD(+)-dependent protein deacetylase Sirtuin-1 (Sirt1) has been implicated in carcinogenesis with dual roles depending on its subcellular localization. In this study, we examined the expression and the role of Sirt1 in different stages of pancreatic carcinogenesis, i.e. ADM models and established PDAC. In addition, we analyzed the expression of KIAA1967, a key mediator of Sirt1 function, along with potential Sirt1 downstream targets. Sirt1 was co-expressed with KIAA1967 in the nuclei of normal pancreatic acinar cells. In ADM, Sirt1 underwent a transient nuclear-to-cytoplasmic shuttling. Experiments where during ADM, we enforced repression of Sirt1 shuttling, inhibition of Sirt1 activity or modulation of its expression, all underscore that the temporary decrease of nuclear and increase of cytoplasmic Sirt1 stimulate ADM. Our results further underscore that important transcriptional regulators of acinar differentiation, that is, Pancreatic transcription factor-1a and β-catenin can be deacetylated by Sirt1. Inhibition of Sirt1 is effective in suppression of ADM and in reducing cell viability in established PDAC tumors. KIAA1967 expression is differentially downregulated in PDAC and impacts on the sensitivity of PDAC cells to the Sirt1/2 inhibitor Tenovin-6. In PDAC, acetylation of β-catenin is not affected, unlike p53, a well-characterized Sirt1-regulated protein in tumor cells. Our results reveal that Sirt1 is an important regulator and potential therapeutic target in pancreatic carcinogenesis.
منابع مشابه
Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates acinar-to-ductal metaplasia in exocrine pancreas.
In gastrointestinal epithelium, metaplastic conversion between predominant cell types is associated with an increased risk of neoplasia. However, the mechanisms regulating metaplastic transitions in adult epithelia are largely undefined. Here we show that matrix metalloproteinase-7 (MMP-7) is expressed not only in the majority of human pancreatic ductal adenocarcinoma specimens, but also in hum...
متن کاملDicer Regulates Differentiation and Viability during Mouse Pancreatic Cancer Initiation
miRNA levels are altered in pancreatic ductal adenocarcinoma (PDA), the most common and lethal pancreatic malignancy, and intact miRNA processing is essential for lineage specification during pancreatic development. However, the role of miRNA processing in PDA has not been explored. Here we study the role of miRNA biogenesis in PDA development by deleting the miRNA processing enzyme Dicer in a ...
متن کاملAcinar-to-ductal metaplasia accompanies c-myc-induced exocrine pancreatic cancer progression in transgenic rodents.
Several important characteristics of exocrine pancreatic tumor pathogenesis remain incompletely defined, including identification of the cell of origin. Most human pancreatic neoplasms are ductal adenocarcinomas. However, acinar cells have been proposed as the source of some ductal neoplasms through a process of acinar-to-ductal metaplasia. The oncogenic transcription factor c-myc is associated...
متن کاملPD2/Paf1 depletion in pancreatic acinar cells promotes acinar-to-ductal metaplasia
Pancreatic differentiation 2 (PD2), a PAF (RNA Polymerase II Associated Factor) complex subunit, is overexpressed in pancreatic cancer cells and has demonstrated potential oncogenic property. Here, we report that PD2/Paf1 expression was restricted to acinar cells in the normal murine pancreas, but its expression increased in the ductal cells of KrasG12D/Pdx1Cre (KC) mouse model of pancreatic ca...
متن کاملAcinar-to-ductal metaplasia in pancreatic cancer development.
Ductal adenocarcinoma is by far the most frequent tumor of the pancreas. Although pancreatic cancer cells share substantial characteristics with pancreatic duct cells, the origin of these cancer cells is still a matter of debate. Progressive changes in the ductal epithelium range from non-papillary to papillary hyperplasia, with little or no development of atypical or dysplastic epithelial lesi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 73 7 شماره
صفحات -
تاریخ انتشار 2013